289,301 research outputs found

    Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks : implication of seismic characterization of fractured reservoirs

    Get PDF
    Roughness and aperture are two important characteristic parameters controlling fluid flow in natural joints and fractures. It has been demonstrated by many authors that knowledge of roughness does not directly lead to that of aperture, and aperture should be handled as a separate geometrical descriptor. To determine the normal deformability and flow response of a fracture, the aperture distribution and the mechanical properties of the rock matrix are required. When shearing of joints and fractures is considered, roughness comes into play and affects the evolution of the aperture distribution. The aperture distribution can be evaluated by knowing the correlation between the asperity profiles of the rock walls of a rock fracture. Thus, the distributions of contact area and void space determine the fracture dilation and hydraulic properties during shearing. In the seismic characterization of fractured reservoirs, various equivalent medium theories describing the effective elastic properties of fractured media have been proposed. One relatively simple theory is based on the assumption of the linear slip interface or displacement discontinuity model of fractures. Two parameters are usually used in the linear slip interface model: the normal and shear fracture compliances defined as the ratio of normal (shear) displacement discontinuity and normal (shear) stress. Fracture compliances are by definition functions of mechanical aperture and are also influenced by the roughness (surface asperity distribution) of fracture surfaces. In this study, I investigate the effects of fracture roughness and apertures on the hydraulic and mechanical properties of fractured rock. Specifically, I focus on two kinds of fracture models which are commonly used in describing the effective hydraulic and mechanical (elastic) response of natural fractures. The first is the rough-walled fracture model and the second is an interface with distributions of contacts and voids (called the asperity fracture model)

    Viscoelastic Fracture of Biological Composites

    Full text link
    Soft constituent materials endow biological composites, such as bone, dentin and nacre, with viscoelastic properties that may play an important role in their remarkable fracture resistance. In this paper we calculate the scaling properties of the quasi-static energy release rate and the viscoelastic contribution to the fracture energy of various biological composites, using both perturbative and non-perturbative approaches. We consider coarse-grained descriptions of three types of anisotropic structures: (i) Liquid-crystal-like composites (ii) Stratified composites (iii) Staggered composites, for different crack orientations. In addition, we briefly discuss the implications of anisotropy for fracture criteria. Our analysis highlights the dominant lengthscales and scaling properties of viscoelastic fracture of biological composites. It may be useful for evaluating crack velocity toughening effects and structure-dissipation relations in these materials.Comment: 18 pages, 3 figure

    Data base for crack growth properties of materials

    Get PDF
    A computerized data base of crack growth properties of materials was developed for use in fracture control analysis of rocket engine components and other NASA space hardware. The software system has files of basic crack growth rate data, other fracture mechanics material properties such as fracture toughness and environmental crack growth threshold values, and plotting and fitting routines for deriving material properties for use in fracture control analysis. An extensive amount of data was collected and entered, and work is continuing on compiling additional data. The data base and software codes are useful both for fracture control analysis and for evaluation or development of improved crack growth theories

    Controlled intermittent interfacial bond concept for composite materials

    Get PDF
    Concept will enhance fracture resistance of high-strength filamentary composite without degrading its tensile strength or elastic modulus. Concept provides more economical composite systems, tailored for specific applications, and composite materials with mechanical properties, such as tensile strength, fracture strain, and fracture toughness, that can be optimized

    Fracture through cavitation in a metallic glass

    Get PDF
    The fracture surfaces of a Zr-based bulk metallic glass exhibit exotic multi-affine isotropic scaling properties. The study of the mismatch between the two facing fracture surfaces as a function of their distance shows that fracture occurs mostly through the growth and coalescence of damage cavities. The fractal nature of these damage cavities is shown to control the roughness of the fracture surfaces
    corecore